CMSC 202
Additional Lecture — Makefiles

Prof. Katherine Gibson

Makefiles

A makefile is a list of rules that can be called
directly from the terminal

o must be called Makefile or makefile

Rules have four parts

o Target — name of object or executable to create
o Dependency List — what Target depends on

o TAB — used to offset an Action

o Action(s) — list of actions to create the Target

CMSC 202 Makefiles 2

Maketile Rule Example

Target

The file to create. In this
case an object file: Inher.o

f_H

Inher.o:

-

.

Dependency List
The files that are required to

Inher.cpp and Inher.h

~

create the object file. In this case

)

f_%

Inher.cpp Inher.h

g++ -ansi -Wall -c¢ Inher.cpp

V%—l

/

<TAB>
Used to signal what
follows as an action

~

k(do not use spaces!)))

/

What needs to be done to create
the target. In this case itis the
kseparate compilation of Inher.cpp/

Action(s) A

CMSC 202 Makefiles

The make Utility

Uses a Makefile to automate tasks like the
compilation of a program

Programs are normally multiple files
o And only a few are changed at a time

Recompliling everything every time can take
a long time, and slows down development
o Using make can help with this

CMSC 202 Makefiles

Etticiency of make

make only recompiles files that need to be

o Files that have been updated
o Files that depend on updated files

Compares the timestamp of the dependency
list items to that of the target

o If a source is newer than the object file, the
object file needs to be recompiled

o Likewise If an object file is newer than the
executable it needs to be re-linked

CMSC 202 Makefiles

Example Maketile

Projectl: Projectl.o Inventory.o Cd.o Date.o
g++ -ansi -Wall -o projl Projectl.o Inventory.o Cd.o Date.o

Projectl.o: Projectl.c Inventory.h
g++ -ansi -Wall -c Projectl.c

Inventory.o: Inventory.c Inventory.h Cd.h
g++ -ansi -Wall -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
gt++ -ansi -Wall -c Cd.c

Date.o: Date.c Date.h
gt++ -ansi -Wall -c Date.c

CMSC 202 Makefiles 6

Specitying a Target

7

The first target in the file is the “default target

o Should be the name of the executable to create
0 Projectl (creates projl executable)

To call a specific rule or create a specific
target, use make <TARGET>

Omitting the target (typing just ‘make”)
will create the default target

CMSC 202 Makefiles 7

Dependency Graph

A file may depend on one or more other files
2 Need to ensure correct compilation order

Create a dependency graph, with the end
goal of a executable named "main”

Our files:

main.cpp

Point.h Point.cpp
Rectangle.h Rectangle.cpp

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

CMSC 202 Makefiles

Dependency Graph — Linking

The “main” executable is generated from 3
object fileS: main.o Point.o Rectangle.o

o “main” depends on these files

Files are linked together to create "main”

main

)

main.o Point.o Rectangle.o

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

CMSC 202 Makefiles

Dependency Graph — Compiling

Each of the object files depends on a
corresponding .cpp file

Object files are generated by compiling the
corresponding .cpp files

main.o Point.o Rectangle.o

main.cpp Point.cpp Rectangle.cpp

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

CMSC 202 Makefiles

Dependency Graph — Includes

Many source code files (. cpp and . h files)
depend on included header files

May also be indirect includes; for example
Rectangle.cpp includes Point.h through Rectangle.h

main.cpp Point.cpp Rectangle.cpp

Rectangle.h

Point.h /

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

CMSC 202 Makefiles 11

Full Dependency Graph

T main Depends

N on

Link main.o Point.o Rectangle.o

T | |

Compile main.cpp Point.cpp Rectangle.cpp

1 |

Rectangle.h

Include
Point.h /

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

CMSC 202 Makefiles 12

Makefile Macros

CMSC 202 Makefiles

13

Why Even Use Maketfiles?

Compiling, linking, and executing become...
o Easler

o Quicker (more efficient)

o Less prone to human error

Also allows us to create and run helper rules
o Clean up unneeded files (like hw2 . cpp~)

Laziness (but efficiently lazy)

CMSC 202 Makefiles 14

Makefile Macros

Similar to an alias or a #define
o Use when you need something over and over

Syntax to define a macro:
PROJ = Projl

|

CC = g++
Macro name Content
Alias for macro Substituted for macro
name in rest of file

CMSC 202 Makefiles

15

Macro Examples

DIR1 = /afs/umbc.edu/users/k/k/k38/pub/CMSC341/Projl/
PROJ = Projl

CC = g++

CCFLAGS = -g -ansi -Wall -I . -I $(DIR1)

OBJECTS = Projectl.o Inventory.o Cd.o Date.o

Notice that we can use
one macro inside another
(declaration order matters)

CMSC 202 Makefiles 16

Using Macros

To access a macro, use the following format:
$ (MACRO NAME)

Projectl: $ (OBJECTS)
$(CC) $(CCFLAGS) -o $(PROJ) .c $ (OBJECTS)

Projectl.o: Projectl.c Inventory.h
$ (CC) $(CCFLAGS) -c Projectl.c

What do each of these rules actually mean?
o (In plain English)

CMSC 202 Makefiles 17

Helper Rules

You can specify targets that do auxiliary
tasks and do not actually compile code

o Remove object and executable files
o Print source code
o Submit all code

Timestamps don’t matter for these tasks
o Good practice to let the makefile know that
o These target are called “phony” targets

CMSC 202 Makefiles 18

Phony Targets

Same syntax, but preceded by a . PHONY
declaration on the previous line

Same as
target name

.PHONY: submit Use a backslash if

the command is

submit:)
longer than one line

|

scp $ (ALL FILES)
k38Q@gl.umbc.edu:cs202proj/proj3/

CMSC 202 Makefiles

19

More Helper Rules

/Be very, very, very,\
Cleaning utilities | VERY careful when
copying these rules
clean: into your Makefile
-rm -f£f *§# *~ _ the first time!

“The -£ flagwill)
supress the prompt
-rm -£f *.o to confirm deletion —

cleanest: cleaner and once it's deleted,

it's gone! (For good!
-rm -f core*; rm -f $ (PROJ) 59 (Forg)/

cleaner: clean

Pure laziness
make:

emacs Makefile

CMSC 202 Makefiles 20

Full Maketile Example

PROJ = Projl

CcC = g++

CCFLAGS = -g -ansi -Wall

SOURCES = $(PROJ) .c Inventory.h Inventory.c Cd.h Cd.c Date.h Date.c
OBJECTS = $(PROJ) .o Inventory.o Cd.o Date.o

$ (PROJ) : $OBJECTS
$(CC) $(CCFLAGS) —-o $(PROJ) $ (OBJECTS) Target rule

(the first rule
$ (PROJ) .o: $(PROJ) .c Inventory.h . .
$(CC) $(CCFLAGS) -c $(PROJ) .c In the file)

Inventory.o: Inventory.c Inventory.h Cd.h
$(CC) $(CCFLAGS) -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
$(CC) $(CCFLAGS) -c Cd.c

Date.o: Date.c Date.h
$ (CC) $(CCFLAGS) -c Date.c

.PHONY: submit
submit:
submit cs341 $(PROJ) $(SOURCES) Makefile *.txt

.PHONY: print
Print:
enscript -G2rE $ (SOURCES) Makefile *.txt

CMSC 202 Makefiles

21

